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ABSTRACT 

A simple means for bounding the propagated trajectory 
e r r o r  induced by an impulsive initial e r r o r  in the n-body 
field is developed. Formulas are derived for the maximum 
acceptable initial e r ror ,  given the mission tolerances, and 
for the maximum time of negligible propagated e r ror ,  given 
the initial impulses and mission tolerances. An example 
i l lustrates the use  of the results within the solar system. 

ii 



CONTENTS 

Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ii 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

AN INEQUALITY FROM THE EQUATIONS 
O F  MOTION.. . . . . . . . . . . . . . . . . . . . . . . . . . .  2 

AN EXPLICIT UPPER BOUND FOR 171 AND ('I1 . . .  5 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13  

Appendix A-Symbol Lis t .  . . . . . . . . . . . . . . . . . . . .  15 

iii 

b 



I 

EXPLICIT UPPER BOUNDS FOR ERROR PROPAGATION 
IN THE n-BODY FIELD 

by 
Albert Rosen* 

Goddard Space Flight Center 

INTRODUCTION 

One of the central problems of astronautical guidance is to estimate what effect a change in 
the position and velocity of a spacecraft at some initial time has on its position and velocity at 
some later time. Such a change may occur accidentally, as when there  is an e r r o r  in the value 
assigned to the initial state vector, or on purpose, as when a rocket motor induces an impulsive 
velocity change. 

If the spacecraft has an essentially Kepler orbit, the propagation of the initial e r r o r  can be 
analyzed precisely by matrix methods (References 1 and 2). If this e r r o r  a r i ses  from a rocket 
motor, taking the cumulative velocity change as an impulse will cause the solution to be approx- 
imate. The closeness of approximation is discussed by Robbins (Reference 3). In circumstances 
where the Keplerian approximation is too crude, it is sti l l  possible to use matrix methods for the 
expression of e r ro r  propagation, provided that the e r r o r  is small  enough to permit valid lineari- 
zation of the relative force between the deviated and initial trajectory. Battin (Reference 4) and 
Baker (Reference 5) develop the proper forms for the matrices involved, and Dusek (Reference 6) 
gives a heuristic discussion of the validity of such linearization procedures. 

Let the propagated e r r o r  vectors be defined as the differences of the position and velocity 
from their values on the original orbit, at some time after the initial e r r o r  is applied. Then, if 
it is desired to represent these vectors accurately, one of the above methods may be used. 

It may be that certain e r r o r s  are so small  that they will produce no appreciable change on the 
trajectory, even after a considerable time. One way to verify this would be to include the effects 
in a numerical integration scheme and compare the resultant trajectory with a trajectory com- 
puted without considering the effects. Another way would be to use the linearized equations of 
motion in a matrix propagation. But it would be f a r  simpler if there  were some easy way to place 
an upper bound on the propagated effect of such a small  e r ror ;  then it should be enough to  note that 
this upper bound is small  (in view of the required precision). 

*Student: St. Josephs College, Pennsylvania. 
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We can develop a simple expression for such an upper bound by assuming that 

1. The neglected e r r o r  is approximated by the instantaneous variations To and 3, in position 
and velocity at t ime t = 0. 

2. The motion of the spacecraft is adequately described by the n-body equations, for the t ime 
of interest:. 

3. Enough is known about the initial o r  "unperturbed" trajectory to permit placing lower 
bounds on the ciosest approach distances of this trajectory to each of the n bodies, in the 
time interval under consideration. 

As a measure of the effect of the e r r o r  induced by the initial e r r o r  Y o ,  G o ,  in position and ve- 
locity, we define two vectors as follows: 7( t )  is the difference between positions at time t ,  in the 
perturbed and unperturbed orbits, respectively. G( t ) is the same difference for velocities. At 
each time t ,  the vector Gi will be the instantaneous vector to the i t h  body in the system, from the 
unperturbed trajectory. 

AN INEQUALITY FROM THE EQUATIONS OF MOTION 

Using the above definitions, Newton's Law of Gravitation leads at once to: 

+ 2(0) = vo , 

where 

pi  = gravitational constant of i th  body. 

n = number of bodies in the system. 

Eventually we will bound the magnitude of the solution of this highly nonlinear equation bythe solu- 
tion to a certain linear homogeneous scalar differential equation with constant coefficients, which 
can be derived from it. 

-4 

Assumethat I;(O)l < I Q i ( 0 ) l  ( i = 1 , 2 , - . - , n ) .  Then,forashortenoughtime, I?(t)l < I G i ( t > l ,  

because all these functions are continuous in time. 
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We first show that I ?( t ) I < I -di ( t) I implies the inequality 

To verify this, expand the square of the quantity on the left, denoted by U, in powers of IGi 1/1 
l?'!/1Gi I ,  where 

and 
= Gi + 7. The result  is 

The maximum value of Uz occurs when 

1 1  1 1 
S(X) = - 4 - - 4 X + 4 ? 4 - 4 x 3 a  

maximizes, x = 16i!/lFl, u 1 -  lFlf16il 
171 < 

andthe magnitudes lGiI  and 
I , the inequality 4 res t r ic t s  u and X: 

(3) 

21 are fixed. Since 

with the extreme values of x in inequality 4 corresponding to parallel and antiparallel to G i .  
But the derivative of S(X)  is 

(5 ) 
3 1 

4 
S' ( x )  = x 3  - - - . 

If we equate S '  ( x )  to zero and solve for x, the discriminant is (a3 +4)/256, which must be posi- 
tive, according to  inequality 4. 
extreme values of x in inequality 4 gives 

Hence S' ( x )  = 0 has one real root. Evaluating S '  ( x )  for the 

, which is negative, 1 
" ( l +  G) = - 

and 

, which is positive 1 

so that the single real root for s' ( x )  = 0 lies inside the interval of x given by inequality 4. 
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This means that S(x) takes on local maximum values for x = l / ( l + f i )  and x = l / ( l - G )  

because, where s' (x) = 0, we have an absolute minimum for S(x). Consider that S(X) -m as X- im. 

Hence, either for T parallel  to -di (giving U = U p )  o r  for ? antiparallel to -di (giving u = ua), ,u 
takes on its maximum value. Evaluating U for these two orientations of 7 and Gi gives 

so that u, 'Up , and U, is an upper bound for U for all orientations of ? and G i  . This completes 
the proof of inequality 2. 

Returning to  Equation 1, the triangle inequality can be combined with inequality 2 to give the 
result  

provided that I TI < I G i  I . This is identical with the inequality 

where f is a function of the n + 1 variables x , y 1  , y2, . . . , y n  given by 

f (x, Y i )  = 

It is assumed in Equation 11 that O ~ X <  y i  (i = 1, 2, * 

increasing functions of x. Also, f d f / d x  is a positive monotonically increasing function of X, be- 
cause it is given by 

, n). Clearly f and f 2  are monotonically 
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Both f (x, yi) and f (x,  yi) df (x, y i ) /ax  are monotonically decreasing in dl the y i ' s ,  so long as x 

remains positive and l e s s  than each of these variables. 

For sufficiently small  t, inequality 10 is valid and can be combined with 

which is true for all t ,  to  give: 

This implicit integral equality enables us to get an explicit upper bound on and . 

AN EXPLICIT UPPER BOUND FOR I ~ I A N D  [ i (  

Consider the differential equations 

For the present, x is a parameter which has the range 0 5 x < Cm n ,  where Cmi  is the smallest of the 
C i's. We assume that the C i  's are chosen on some interval 0 5 t 5 T, in such a way that 

and we restr ic t  To to satisfy the relation 

This last restriction causes no practical difficulties, because the Ci represent lower bounds on the 
closest approach of the unperturbed trajectory to  the i t h  body, and no initial e r ro r  in position will 
in practice be as large as any of these distances. 

The solution of Equation 15 on 0 5 t 'TI is given by 

( G o (  sinh f (x, C i )  t 
w = 1y01 cosh f (x, Ci) t + ~ 

f ( x ,  Ci)  



P 

which satisfies the integral equation 

Comparing Equation 19 and inequality 14 leads u s  to  suppose that w(x, t )  may provide an upper 
bound for I?'( t)l , provided that x can be chosen as an upper bound on I;( t )  I ,  during the t ime under 
consideration. If this were so, we might t ry  to  choose x to satisfy 

which would be consistent, at least, with the supposition that w(x, t )  provides an upper bound on 
I ?I  on 0 5 t 5 T ,  T 5 T,,  and that x provides an  upper bound on 1 ;I on that interval. 

'. 

These heuristic considerations lead to the following theorem. 

Theorem 1. Let w(x, t )  be defined as in Equation 18, let the Ci ' s  be chosen to satisfy Equation 16, 
and let l ? o l  be restricted as in inequality 17. Then if x satisfies inequality 20: w(x, t )  provides 
an upper bound on 1 on 0 5 t 5 T ,  and aw(  x, t ) /a  t provides an upper bound on I GI on that interval. 

We show that W(X, t )  provides an upper bound on on the half-open interval 0 5  t < T. The 
continuity of I ;I and W( X, t )  in t ime then enables the extension of this  result  to the endpoint of that 
interval. 

Assume the contrary, that there  is a time in 0 5 t < T such that w( x, t ) < I ;( t ) 1 . Then, by the 
continuity of 171 and w in time, there  is an open subinterval of 0 5 t  < T  where w(x, t )  < IT( t ) l ,  and 
there  is a first such subinterval. Letting t ,  denote the beginning of the subinterval, ~ ( t )  = I?( t ) /  

- W(X, t ) ,  and letting t ,  be some t ime > t,, sufficiently close to t , ,  gives the inequalities: 

TO see  that inequality 21d is true, note that inequality 21b implies that 1; (t ,) I < x, because 
W(X, t , )  < W(X, T) 5 X. Continuity then demands that Iy( t ) l  remain less than o r  equal to  x for a 
short  enough time after t ,- i. e., for a t close enough to  t ,. 
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Inequality 21e follows from the fact that 

since y ( t l )  = 0. But since this is positive for every t in t ,  < t 5 t 2 ,  then ? ( s )  must be positive in 
that interval, so y( t) is monotonically increasing in t in that interval. 

Since inequality 21d is true, and x 5 I Gi ( t  ) I on 0 5 t 5 T, we conclude that inequality 14 must 
hold in 0 5 t < t 2 ,  Subtracting Equation 19 from inequality 14 then gives, letting t = t 2 ,  

since the contribution to  the integral from 05 t 5 t 
fact that ci 5 16, I (i = 1, 2, - . . , n), we can reduce this to 

is not positive. But by inequality 21d, and the 

0 < y( t2)  5 f 2  (x ,  Ci)  It’ [ l?(s)\  -w(x, s )  1 ds2 
t l  t l  

The mean-value theorem then gives, with t 5 t 5 t : 

(23) 

But by inequality 21e, this implies that 

This is a contradiction, as may be seen by dividing through by r ( t 2 )  and letting ( t2  - t 

zero. Therefore W( t ) 2 1; I on 05 t < T and, by continuity, on 0 5 t 5 T .  

approach 

To see that dw/at, IS1 on 05 t < T ,  we use  this result, noting that f 2  (1;1, lai\) 5 f 2  (x, Ci)  on 
0 5 t 5 T, and also that inequality 16 is t rue  on 0 5 t 5 T. But, always: 
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. .. . ._ .. 

Taking the first partial  derivative of Equation 19 with respect to  time, and combining th is  with 
inequalities 26 and 10 gives 

which by the above remarks  is reducible to 

Since the integrand has been shown to be non-positive for all t in 05 t 5 T , the left-hand side of 
inequality 28 must also be non-positive in that interval. This concludes the proof of theorem I. 

The question now is: for what range of values of T, I To 1 , and 1 ;o 1 does there exist a range 
of x values that satisfy inequality 20, and what is th is  range of x values? Can these x-values be 
conveniently found? 

Consider the following expressions for w ( x ,  T)  and dw(x, T)/dx: 

sinh fT 
w ( x ,  T)  = I f o /  cosh f T  + 5, 7- 

In Equations 29 and 30, f f (x, Ci)  and f '  = d f  (x. Ci)/dx. 

Both ser ies  in Equation 30 are monotonically increasing in fT, and both f and f f ' a r e  mono- 
tonically increasing in X; therefore dw( x;T)/dx is monotonically increasing in x and T. 

When x = I To I , W ( X ,  T) - x is positive for T > 0, and w( x, T )  - x is also positive for x - Cm , be- 
cause this makes f (x, Ci)  infinite. The fact that dw(x, T)/dx is positive and monotonically increas- 
ing in x implies that the function w(x, T) - x i s  always curving upward in x, SO that it equals zero at 
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none, one, or two points. If there  are any roots, then w ( x ,  T )  - x has a minimum which is also an 
extremum on 1 yo 1 I x < Cmi n. Clearly then, it is possible to find x such that w( x ,  T )  5 x is satisfied 
if and only if there  are real roots t o  

and any value of x between or including these roots wil l  satisfy w( x ,  T)  5 x. 

For small  T, Equation 31 has two roots, since the ser ies  in Equation 29 can be made arbitrari ly 
close to  ITo I by choosing a small  enough T, regardless of where x is in l T o l  5 x < Cmi . For a large 
T, the value of dw (x, C i ) / a x  at x = ITo I becomes large, and since it is always increasing in x on 
I ro  I 5 x < Cmi n, there  can be no intersection points of w( x ,  T )  with x; and no roots to w( x,  T )  - x = 0. 
There is a crit ical  value of T, therefore, which permits one and only one solution to  Equation 31, 
and this is the largest  T for  which inequality 20 can be satisfied. At th i s  cri t ical  value of T, the  
root of Equation 31 defines the extremum of w( x,  T )  - x, so the condition 

+ 

must also be satisfied. Solving Equations 31 and 32 simultaneously for T gives the desired cri t ical  
value, provided that we know 13, I , I yo I , and all the Ci 's. 

A simpler method for finding the cri t ical  T can be derived, however. The function w( x ,  T )  has 
the form w = W( f T ,  f ) .  The total derivative of Equation 31 with respect to x is therefore given by 

d w ( x ,  T )  af dT d W ( 0  . df 
J ( f T F [ d x  . ' dx' f] ' d f  dx  = 1 ,  (33) 

where we use.the fact that  Equation 31 determines T as a function of x .  On the other hand, Equa- 
tion 32 is identical with 

Since there  is a unique solution to Equations 31 and 32 on I To 1 5 x < Cmi n, and since f . (dw/d( f T ) )  

is readily verified to be nonzero, we conclude that Equation 31 combined with Equation 32 is the 
same as Equation 31 combined with the condition that dT/dx = 0. This condition determines the 
maximum value of T( x )  on 17, I 5 x < Cm , because T must vanish at both endpoints, in order that 
Equation 31 shall have roots. Solving Equation 31 for T explicitly leads to the following theorem. 
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Theorem II. Let ~ ( x )  be defined by 

T(X) = 4, 

Then, for all T satisfying the inequality 

I % I  
+ 

(35) 

there  are values of x satisfying w(x, T)(x; all such values lie in the interval x1  5 X' x 2 ,  where x1 

and x2  are the two roots of the transcendental equation: 

F O I  

(x> Ci) 
Iyol cosh f (x, Ci)  T + f sinh f (x, Ci)  T = x , (37) 

Suppose that the impulse Go and position e r r o r  7, were assigned and it was required to know 
for  how.long a time the propagated effect of these vectors would remain less than x in position mag- 
nitude ( I  ?, I 5 x < Cmi n )  . The answer to this is: set T = T (  x) .  This is legitimate, because, if 
T = T ( X )  , then Equation 37 is satisfied, so w(x, T) = x .  Hence inequality 20 is satisfied, and w(x, t )  

bounds the e r r o r  in position on 0 5 t 5 T, and x bounds the e r r o r  in position on 0 5 t 5 T also, as 
needed, since x,w(x, t )  on O 5 t  5T. 

Another theorem may be presented here: 

Theorem III. If it is required that the propagated position e r r o r  be less than or equal to x, where 

I r o  I 5 x < cm 
defined in Equation 35. 

+ , then this is assured by taking the time of propagation equal to 7(  x) ,  where 7 (  x)  is 

Suppose, next, that it is desired to know how large an initial e r ror ,  F0 and Go is permissible, 
in order that the propagated effects of these e r r o r s  over a pre-assigned t ime T should be less  than 

x ( F0l 5X.C. i . ) .  

To answer this, note that for any x satisfying 0 5 x < Cm , it is possible to choose the coef- 
ficients of cosh f (x, Ci)  T and [sinh f ( x ,  C i )  T]/f (x, C i )  so that 

sinh f ( x ,  Ci) T 
lyo1 (cosh f (x, Ci) . T) + ( +Xi) ) 5 .  (38) 

is satisfied, thereby guaranteeing that x is indeed an upper bound on 171 after t ime T. In particular, 
if I 7, I = 0, then the propagated e r r o r  is less than x after t ime < provided that I Go I satisfies the 
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inequality 

xf  (x. Ci) 
(39) 

Note that although T ( X )  in Equation 35 may become formally greater than T,, the t ime for which 
the C i ' s  were determined, the fact has no physical significance. If this happens, we can only be as- 
sured that x exists to satisfy inequality 20 on 0 5 t 5 TI. If it is desired to extend the interval past  
T,, then it is necessary to  find Ci 's for this extended interval to make all the results valid. 

It is also worth noting that looser tolerances in mission requirements (larger x) in Theorem 
Ill do not necessarily produce la rger  t imes of negligible effect, because ~ ( x )  does have a maxi- 
mum. If x is chosen to  be larger  than the value which maximizes ~ ( x ) ,  then a looser tolerance will 
decrease T (  x )  , giving pessimistic results. In such a case, the solution is to  take the t ime as max- 
imum T (  x), since the e r r o r  x corresponding to  this maximum is certainly less than an e r r o r  cor- 
responding to the t imes less than the maximum, brought on by large x. 

Finally, i f  x/Cmi is small, then, to a good approximation, f (x, Ci)  = f (0, C i )  , i.e., 

Example 

A spacecraft enroute to  the outer planets passes  through the asteroid belt and may be subjected 
km/sec. This figure may to  an impulsive velocity change there  as large as 50 km/day = 5.8 x 

have been arrived at by placing lower bounds on the closest approach of the spacecraft to  the as- 
teroids (as determined by their physical radius), lower bounds on the relative velocity of rocket 
and asteroid, and upper bounds on the masses  of asteroids, and by assuming Keplerian interactions 
for the short encounter t ime with the asteroid. We wish to examine the orbit for some part  of its 
path during which the closest approach distances to the sun and other large bodies in the solar sys- 
tem is given by Table 1. 

The other bodies in the solar system may be considered negligible in influencing the propaga- 
tion of the impulse. For  how long does the propagated e r r o r  in position remain less than 0.008 AU? 

Solution: Use Theorem III. First calculate f (x, C i ) .  Since 0 . 0 0 8 / C i  << 1 by Table 1 for all the 
bodies, we use the approximation: 

where pLs = Sun's gravitational parameter. 

11 



Table 1 

Closest Approach of Spacecraft to 
Bodies in Solar System 

I 

Mercury 
Venus 

Jupiter 
Saturn 
Uranus 
Neptune 

‘1 AU = 1.49 x lo8  km. 

Closest Approach, AU* 

1.50 
1.00 
1.60 
1.00 
0.80 
3.50 
8.00 
9.00 
14.00 

1 
= 44.5 days- ’  . 

Now the largest value of pi/ps is that for 
Jupiter, which is 0.9 x 
the largest value of (Cs/Ci)3 is that for Mars, 
which is 6.6. Hence, to a percent accuracy, 

Also, by Table 1, 

f (x, Ci) =F, 
where p, is in AU3 days-’, C, is in AU. That 
is: 

f ( x ,  Ci) = i- 

Therefore we a r e  sure  of a propagated e r r o r  less  than 0.008 (or  1.20 X lo6 km) for a length of time 
given by 

T = T (1.20 x lo6) 

+ )/(1.2Ox1O6)’ + 
= 44.5 4n 50.0 x 44.5 

= 44.5gn { 25.0x44.5 1.nx106} 

= 44.58n(l080) = 44.5 x 6.98 = 311 days  . 

As another example, suppose we wish to know for how large a velocity impulse the propagated ef- 
fect in position would be less  than 0.008 AU over a period of 100 days, assuming that Table 1 is 
valid. 

Solution: Again, f ( X, ci) = 1/44.5 and we can use inequality 39 to obtain the upper bound on IS, I : 

+ 1.2 x lo6 
l v o l  5 

44.5 sinh (g) 
1.2 x 106 

- 44.5 sinh (2.24) 

1.2 x lo6 
- 44.5 * 4.64 
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- 1.20 x106 - 
206 

km 
= 5811 day 

= 067 km/sec. 

So impulses as large as 0.06 km/sec could be tolerated without violating mission requirements. 
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Appendix A 

Symbol l i s t  

4 

r, , 5,: Initial e r r o r s  in position and velocity. 

?( t ), 5( t ) : Instantaneous e r r o r s  in position and velocity. 

Qi ( t ) :  Vector from unperturbed orbit to i t h  body. 
4 

. pi  : Gravitational parameter of i t h  body. 

ci :  Upperboundon lai(t) l  o n O ( t < T , .  

cmin: Smallest of the Ci's. 

V 

w ( x ,  t )  = l ? , l  cosh f (x, Ci)  t + e sinh f ( x ,  Ci) t 
(x*  Ci) 

y ( t )  = I ? ( t ) l  - w(x ,  t )  . 

1 
f (x, Ci) ,En 

~ [- 
1 AU = 149 x lo6  km. 

$ 2 -  I 4 

r O  

+ 

NASA-Langley, 1968 - 30 

I: 
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